

Polymer seed film coating mixed with micronized natural minerals as a management tool against Aphanomyces root

rot in field pea

Sonika Pariyar¹, Patsey Michhetti³, Lingyun Chen¹, Sabine Banniza² and Linda. Y. Gorim^{1*}

- ¹ Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
- ² Department of Plant Science, University of Saskatchewan, 51 Campus Dr, Saskatoon, S7N 5A8
- ³ Kenobie Inc., 100 arbour Crest Terrace NW Calgary, T3G 5A2, Alberta

INTRODUCTION

- Canada is the second major producer and the primary exporter of field pea in the world.
- Field pea is susceptible to various root diseases such as Pythium spp, Rhizoctonia spp, Fusarium spp and Aphanomyces euteiches which occur together in nature in the Pea Root Rot Complex.

Characteristics of Aphanomyces euteiches

- ➤ It is a soil-borne oomycete pathogen.
- ➤ It was identified in Saskatchewan and Alberta in 2012 and 2013 respectively.
- ➤ It produces resting spores called oospore that can persist in soil longer than 10 years.
- ➤ Under favorable conditions, it can cause yield loss up to 70%.
- ➤ The infected roots show water soaked, honey brown, or caramel-colored appearance.

Integrated Disease Management

Figure 1: Integrated disease management strategies for Aphanomyces euteiches.

Zeolite and chitosan - the need for more tools!!!

- Zeolite is a natural mineral that has broad antifungal and antibacterial properties.
- Chitosan is a natural polymer with antifungal properties.

Research questions

✓ Can zeolite-based seed coatings mixed with polymer chitosan used as a management tool against Aphanomyces root rot?

OBJECTIVE

To screen the different types of zeolite-based seed coatings as a management tool against Aphanomyces root rot.

METHODOLOGY

- Seed material: CDC Lewachko, Isolates: Ae13
- Growth chamber experiment: conducted in completely randomized design with around 67 types of zeolite seed coatings and control replicated 5 times.
- ❖ The process is to be repeated for coatings showing promise (see Figure 2).

METHODOLOGY (continues)

Figure 2: Flowchart of Ahanomyces infection

Figure 3: Disease Scoring Scale

PRELIMINARY RESULTS

Figure 4: Mean disease severity of different seed coatings. The error bars indicate standard error of means. *, ** and *** represents significance at p<0.05, <0.01 and <0.001 respectively

Control

Figure 5: Visual symptoms comparisons

RESULTS

- ❖ Coat 1, 2, 3, 4, 5, 9, 11, 13 and 38 demonstrated significantly lower disease score compared to the checks.
- However, assessment is still in progress and so, final conclusions can not be made.

FUTURE WORK

- This experiment will be repeated twice.
- Once we narrow down effective seed coating/coatings, we will again confirm their effectiveness by inoculating with zoospore.
- Basic seed physiological processes such as imbibition will be assessed in promising seed coatings.
- Germination & imbibition data will be related to reserve mobilization during early seedling growth to ascertain seedling health.

ACKNOWLEDGEMENT

Technician Crew

- Salvador Lopez
- Karanjot Gill

Cropping Systems Team

- Fernando Guerrero Zurita
- Sumedha Nallanthighal
- Jedida Chirchir
- Priscillar Wenyika
- Suman BagaleTerence Simbo
- Nolan Johnson

Funders:

Contact information:
*gorim@ualberta.ca
pariyar@ualberta.ca