

Effects of liming on soil pH, soil nitrogen balance, and grain yield under varying fertility management in a long-term cereal-forage rotation

¹Jedida Chirchir, ²Miles Dyck, ¹Linda Gorim

¹Department of Agricultural, Food, and Nutritional Science, & ²Department of Renewable Resources, University of Alberta, Edmonton Canada

Introduction

- □ Acidification of agricultural soils is intensified by the continuous use of nitrogen and sulfur-based fertilizers.
- □ Low soil pH can impair root development, nutrient and water uptake, and plant growth, reducing yields of acid-sensitive crops (Fig. 1).
- Soil acidity limits crop choices in rotations and mixed cropping systems.
- Liming increases soil pH and reverses associated challenges.
- □ Prairie studies on the benefits of long-term liming under different crop management practices are limited and dated.
- □ This study aims to evaluate the long-term effects of liming and different fertility management on soil pH, soil nitrogen, grain yield, and grain & straw nitrogen recovery in a 5-year rotation.

Figure 1: Effects of low soil pH on plant physiological processes and associated agronomic parameters

Materials and methods

Figure 2: Experiment layout at The Breton Classical Plots, Alberta, Canada.

Treatments evaluated:

- ✓ Four (4) nutrient management practices
- ✓ Lime vs. no-lime

Table: Nutrient management

Crop sequences			
Wheat	Oat	Barley	Hay
N-P-K-S (kg ha ⁻¹)			
0-0-0-0	0-0-0-0	0-0-0-0	0-0-0-0
50-*-*-*	75-*-*-*	50-*-*-*	0-0-0-0
50-22-46-20	75-22-46-20	50-22-46-20	0-22-46-20
0-22-46-20	0-22-46-20	0-22-46-20	0-22-46-20
	0-0-0 50-*-*-* 50-22-46-20	Nheat Oat N-P-K-S 0-0-0-0 50-*-*-* 50-22-46-20 75-22-46-20	Wheat Oat Barley N-P-K-S (kg ha ⁻¹) 0-0-0-0 0-0-0-0 50-*-*-* 75-*-*-* 50-22-46-20 75-22-46-20

^{*} Varies according to source

Results and discussions

Figure 3: Impacts of liming and different fertilizer management practices on soil Properties, crop yields, and cereal nitrogen recovery in a cereal-forage system

Crain N recovery N BNF Straw N Straw N Mineralized organic N

Figure 4: Indirect effect of carryover acidity affecting BNF in legume forages, reducing N availability to subsequent wheat (A) and oats (B) in the 5-year crop rotation.

- □ All the nutrient management practices reduced soil pH.
- Biological N fixation by legumes in the hay sequences in limed NPKS and PKS treatments significantly increased N availability to subsequent cereal crops, resulting in greater N recovery and yield in the limed halves.

Conclusions

□ The most significant reduction in soil pH was observed with N and sulfur-based fertilizers.

- □ Soil pH may affect N recovery and grain yield indirectly in rotations.
- Lime is required to maintain soil pH and sustain yields in agricultural fields with long-term, annual fertilizer applications.
- Offsetting fertilizer applications with manure can slow down soil acidification.

Acknowledgments

A special thanks to my supervisors:

Dr. Linda Gorim,

Dr. Miles Dyck

Breton plots manger: Dick Puurveen CSRG, University of Alberta

Corresponding authors: chirchir@ualberta.ca,
gorim@ualberta.ca